Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis.

نویسندگان

  • Jinyuan Liu
  • Laura A Blaylock
  • Gabriella Endre
  • Jennifer Cho
  • Christopher D Town
  • Kathryn A VandenBosch
  • Maria J Harrison
چکیده

The formation of symbiotic associations with arbuscular mycorrhizal (AM) fungi is a phenomenon common to the majority of vascular flowering plants. Here, we used cDNA arrays to examine transcript profiles in Medicago truncatula roots during the development of an AM symbiosis with Glomus versiforme and during growth under differing phosphorus nutrient regimes. Three percent of the genes examined showed significant changes in transcript levels during the development of the symbiosis. Most genes showing increased transcript levels in mycorrhizal roots showed no changes in response to high phosphorus, suggesting that alterations in transcript levels during symbiosis were a consequence of the AM fungus rather than a secondary effect of improved phosphorus nutrition. Among the mycorrhiza-induced genes, two distinct temporal expression patterns were evident. Members of one group showed an increase in transcripts during the initial period of contact between the symbionts and a subsequent decrease as the symbiosis developed. Defense- and stress-response genes were a significant component of this group. Genes in the second group showed a sustained increase in transcript levels that correlated with the colonization of the root system. The latter group contained a significant proportion of new genes similar to components of signal transduction pathways, suggesting that novel signaling pathways are activated during the development of the symbiosis. Analysis of the spatial expression patterns of two mycorrhiza-induced genes revealed distinct expression patterns consistent with the hypothesis that gene expression in mycorrhizal roots is signaled by both cell-autonomous and cell-nonautonomous signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae.

The establishment of the arbuscular mycorrhizal symbiosis results in a modification of the gene expression pattern in both plant and fungus to accomplish the morphological and physiological changes necessary for the bidirectional transfer of nutrients between symbionts. H(+)-ATPase enzymes play a key role establishing the electrochemical gradient required for the transfer of nutrients across th...

متن کامل

Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis.

The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleava...

متن کامل

Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling

The establishment of an arbuscular mycorrhizal (AM) symbiotic interaction is a successful strategy for the promotion of substantial plant growth, development, and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the establishment of functional AM symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, which a...

متن کامل

The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice.

The central structure of the symbiotic association between plants and arbuscular mycorrhizal (AM) fungi is the fungal arbuscule that delivers minerals to the plant. Our earlier transcriptome analyses identified two half-size ABCG transporters that displayed enhanced mRNA levels in mycorrhizal roots. We now show specific transcript accumulation in arbusculated cells of both genes during symbiosi...

متن کامل

Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants.

In this study, it has been determined whether the arbuscular mycorrhizal (AM) symbiosis is able to alter the pattern of dehydrin (LEA D-11 group) transcript accumulation under drought stress, and whether such a possible alteration functions in the protection of the host plants against drought. Two dehydrin-encoding genes have been cloned from Glycine max (gmlea 8 and gmlea 10) and one from Lact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 15 9  شماره 

صفحات  -

تاریخ انتشار 2003